Abstract

Wild-type (WT) and transgenic tobacco plants overexpressing isopentenyltransferase (IPT), a gene coding the rate-limiting step in cytokinin (CKs) synthesis, were grown under limited nitrogen (N) conditions to evaluate the role of CKs in NUE (N-use efficiency) and in different parameters that determine the quality of tobacco leaves. The results indicate that WT tobacco plants submitted to N deficiency show a decline in the leaf/root ratio, associated with a decrease in the NUE and in tobacco-leaf quality, defined by an increase in the quantity of nicotine. On the contrary, the transgenic plants submitted to N deficiency maintained the leaf/root ratio, presenting a higher NUE and greater quality of tobacco leaves than the WT plants, as the latter showed reduced nicotine and an increase in reducing sugars under severe N-deficiency conditions. Therefore, the overexpression of CKs under N deficiency could be a useful tool to improve tobacco cultivation, given that it could reduce N-fertilizer application and thereby provide economic savings and environmental benefits, maintaining yield and improving tobacco leaf quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call