Abstract

Cytokinetics regulating cell cycle division can be modulated by several endogenous factors. EAE (experimental autoimmune encephalomyelitis) increases proliferation of progenitor cells in the subventricular zone (SVZ). Using cumulative and single S phase labeling with 5-bromo-2-deoxyuridine, we examined cell cycle kinetics of neural progenitor cells in the SVZ after EAE. 20% of the SVZ cell population was proliferating in adjuvant control rats. However, EAE significantly increased them up to 27% and these cells had a cell cycle length (TC) of 15.6h, significantly (P<0.05) shorter than the 19h TC in non EAE SVZ cells. Few TUNEL (+) cells were detected in the SVZ cells of adjuvant controls. EAE increased (P<0.05) TUNEL (+) nuclei in SVZ suggesting early stage progenitor cell death. Cell cycle phase analysis revealed that EAE substantially shortened the length of the G1 phase (9.6h) compared with the G1 phase of 12.25h in adjuvant control SVZ cells (P<0.05). This reduction in G1 contributes to EAE-induced reduction of TC because no significant changes were detected on the length of S, G2 and M phases between the two groups. Our results show a surge in proliferating progenitor cells in the SVZ with concomitant increase in apoptotic cell death after EAE. Furthermore, increase in the SVZ proliferation contributes to EAE-induced neurogenesis and this increase is regulated by shortening the G1 phase. Our investigation suggests the activation of quiescent cells in SVZ to generate actively proliferating progenitors. Moreover, the increase in the cell death in proliferating population may contribute towards negative regulation of proliferative cell number and hence diminished regenerative capacity of CNS following EAE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call