Abstract

Inflammatory mechanisms are implicated in the pathology of Alzheimer’s disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with “non-demented individuals with AD pathology” and non-demented healthy control (ND) individuals. “Non-demented individuals with AD pathology” are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.

Highlights

  • Are inflammatory alterations a cause or consequence of AD neurodegeneration?The molecular mechanisms underlying Alzheimer’s disease (AD) pathogenesis have not yet been elucidated

  • We have previously investigated the expression of the following cytokines [33]: (i) Interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)α, which are frequently evaluated cytokines in AD [3,58,59]. (ii) Other members of the IL-1 superfamily, including IL-1 receptor antagonist, IL-18, and IL-33, which are involved in AD pathogenesis [17,60,61,62,63,64,65]

  • We found that the mRNA levels for IL-1β, IL-10, IL-13, IL-18, IL-33, TACE, and TGFβ1 were significantly higher in the temporal cortex of AD patients compared to high pathology control (HPC) individuals

Read more

Summary

Introduction

Are inflammatory alterations a cause or consequence of AD neurodegeneration?The molecular mechanisms underlying Alzheimer’s disease (AD) pathogenesis have not yet been elucidated. It is important to investigate changes in inflammatory mediators in postmortem brain tissues from AD, HPC, and ND individuals on the protein level.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call