Abstract

Some biochemical events following the binding of prolactin (PRL) to its receptor in normal human leukocytes were investigated. PRL enhanced JAK2 phosphorylation in peripheral blood mononuclear cells (PBMC) but not in granulocytes. PRL also induced phosphorylation of Stat-5 in PBMC and Stat-1 in granulocytes. Subsequent binding of Stat-5- and of Stat-1-like molecules to a GAS responsive element from the β-casein promoter was detected by EMSA. p38 MAPK (but not p42/p44 MAPK) was activated by PRL in both leukocyte populations. PRL induced iNOS and CIS mRNA expression in granulocytes. Increased expression of IRF-1 and SOCS-2 was observed in granulocytes and of SOCS-3 and iNOS in PBMC. Similar effects were obtained with ovine and human PRL. Antiserum to PRL reduced iNOS and IRF-1 expression induced by PRL in granulocytes and reduced iNOS expression in PBMC. Also, pretreatment of granulocytes with a p38 MAPK inhibitor (SB 203580) prevented in part PRL-induced iNOS and IRF-1 expression. In PBMC, the p38 inhibitor decreased PRL-induced iNOS gene expression. These results indicate that PRL-induced gene regulation in leukocytes requires the activation of at least two different pathways: the Stat and the MAP kinase pathways. Moreover, although PRL activates Stat in both leukocyte types, signal transduction is different in granulocytes and in PBMC. Most importantly, PRL modulates the expression of genes crucial to leukocyte function. The present findings reinforce the concept that PRL has “cytokine-like” activity in human leukocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call