Abstract

We investigated the cytokine/chemokine secretions and alteration of protein expression from peripheral blood mononuclear cells (PBMCs) cocultured with adult liver flukes (Opisthorchis viverrini) for 6 to 24 h. PBMC-derived proteins were identified by two-dimensional electrophoresis and mass spectrometry, and the cytokines/chemokines in the supernatant were assessed using a cytokine array. Exposure to O. viverrini induced increases in secretion of proinflammatory cytokines, costimulating protein, adhesion molecules, and chemotactic chemokines relative to untreated controls. In contrast, secretion of the CD40 ligand, interleukin 16, and macrophage inflammatory protein 1β decreased. Proteomic analysis revealed that expression of 48 proteins was significantly altered in PBMCs stimulated with O. viverrini. Annexin A1 (ANXA1) was selected for further study, and immunoblotting showed upregulation of ANXA1 expression in PBMCs after 12 and 24 h coculture with liver flukes. In an in vivo study, transcription and translation of ANXA1 significantly increased in livers of hamsters infected with O. viverrini at 21 days and from 3 months onwards compared to normal controls. Interestingly, immunohistochemistry revealed that ANXA1 was present not only in the cytoplasm of inflammatory cells but also in the cytoplasm of cholangiocytes, which are in close contact with the parasite and its excretory/secretory products in the biliary system. Expression of ANXA1 increased with time concomitant with bile duct enlargement, bile duct formation, and epithelial cell proliferation. In conclusion, several cytokines/chemokines secreted by PBMCs and upregulation of ANXA1 in PBMCs and biliary epithelial cells might have a role in host defense against O. viverrini infection and tissue resolution of inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.