Abstract

The birth prevalence of craniosynostosis (premature suture fusion) is 300 – 500 per 1,000,000 live births. Surgical management involves the release of the synostosed suture. In many cases, however, the suturectomy site rapidly reossifies, further restricts the growing brain and alters craniofacial growth. This resynostosis requires additional surgery, which increases patient morbidity and mortality. New findings in bone biology and molecular pathways involved with suture fusion, combined with novel tissue engineering techniques, may allow the design of targeted and complementary therapies to decrease complications inherent in high-risk surgical procedures. This paper selectively reviews recent advances in i) identifying genetic mutations and the aetiopathogenesis of a number of craniosynostotic conditions; ii) cranial suture biology and molecular biochemical pathways involved in suture fusion; and iii) the design, development and application of various vehicles and tissue engineered constructs to deliver cytokines and genes to cranial sutures. Such biologically based therapies may be used as surgical adjuncts to rescue fusing sutures or help manage postoperative resynostosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.