Abstract

The pathogenic yeast Cryptococcus neoformans and C. gattii commonly cause severe infections of the central nervous system in patients with impaired immunity but also increasingly in immunocompetent individuals. Cryptococcus is phagocytosed by macrophages but can then survive and proliferate within the phagosomes of these infected host cells. Moreover, Cryptococcus is able to escape into the extracellular environment via a recently discovered nonlytic mechanism (termed expulsion or extrusion). Although it is well established that the host's cytokine profile dramatically affects the outcome of cryptococcal disease, the molecular basis for this effect is unclear. Here, we report a systematic analysis of the influence of Th1, Th2, and Th17 cytokines on the outcome of the interaction between macrophages and cryptococci. We show that Th1 and Th17 cytokines activate, whereas Th2 cytokines inhibit, anticryptococcal functions. Intracellular yeast proliferation was significantly lower after treatment with the Th1 cytokines gamma interferon and tumor necrosis factor alpha and the Th17 cytokine interleukin-17 (IL-17). Interestingly, however, the Th2 cytokines IL-4 and IL-13 significantly increased intracellular yeast proliferation while reducing the occurrence of pathogen expulsion. These results help explain the observed poor prognosis associated with the Th2 cytokine profile (e.g., in human immunodeficiency virus-infected patients).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.