Abstract
BackgroundMalaria and helminths share the same geographical distribution in tropical Africa. Studies of the interaction of helminth and malaria co-infection in humans have been few and are mainly epidemiological, with little information on cellular immune responses. This study aimed to determine Cytokine profiles among patients co-infected with Plasmodium falciparum malaria and soil borne helminth attending Kampala International University Teaching Hospital (KIU).MethodsA case control study of 240 patients were recruited at KIU teaching hospital. Patients with Plasmodium falciparum malaria were 55 (22.9%) and those with soil-borne helminths were 63 (26.3%). The controls were 89 (37.1%), while those co-infected with Plasmodium falciparum malaria and soil-borne helminths were 33 (13.8%). Cases were defined as having a positive blood smear for P. falciparum malaria, those with helminths or co-infections of the two. Negative controls were those with a negative blood smear for P. falciparum malaria and those with no stool parasitic infections. Patients presenting with signs and symptoms of malaria or those suspected of having helminths were recruited for the study. A panel of five cytokines (IFN-γ, TNF-α, IL-6, TGF-β and IL-10) were assayed from plasma samples in patients with and without Plasmodium falciparum malaria, patients with and without helminth, and then those co-infected with the two diseases diagnosis was done using thick blood smears stained with 10% Giemsa and stool examination was done following the Kato Katz technique following standard procedures.ResultsThe prevalence of Plasmodium falciparum malaria by sex was 28 (11.7%) and 27 (11.3%) in male and female respectively. The overall prevalence of soil borne helminth was 26.3%, and among those harbouring helminths, 13.8% were co-infected with Plasmodium falciparum. Cytokine levels significantly differed across Plasmodium falciparum malaria, soil borne helminth infected patients and health controls for IFN-γ (P = 0.023), IL-10 (P = 0.008) and TGF-β (P = 0.0001). Cytokine levels significantly differed across Plasmodium falciparum malaria, soil borne helminth infected patients and patients co-infected with Plasmodium falciparum malaria and soil borne helminth for IL-10 (P = 0.004), IL-6 (P = 0.011) and TGF-β (P = 0.003).ConclusionAn up-regulation of IFN-γ during Plasmodium falciparum malaria and an up-regulation of IL-10 and TGF-β in soil borne helminth infections was demonstrated. We demonstrate that co-infections of Plasmodium falciparum and soil borne helminth lead to an up-regulation of IL-10 and IL-6 and a down-regulation of TGF-β.Trial registration No17/10-16
Highlights
Malaria and helminths share the same geographical distribution in tropical Africa
We demonstrate that co-infections of Plasmodium falciparum and soil borne helminth lead to an up-regulation of IL-10 and IL-6 and a down-regulation of transforming growth factor Beta (TGF-β)
When median plasma IFN-γ, IL-10 and TGF-β levels were compared across groups, the results showed that Plasmodium falciparum malaria infected individual expressed significantly higher (P < 0.05) levels of IFN-γ (47.7 pg/ml) as compared to health controls (8.8 pg/ml) and soil borne helminths infected individuals (22.8 pg/ ml, Fig. 1a)
Summary
Malaria and helminths share the same geographical distribution in tropical Africa. The biggest disease burden is mainly encountered among children in sub-Saharan Africa [1, 2]. This scenario is further complicated by the overlapping distribution of parasitic diseases in the tropics [3, 4] among which malaria-helminths co-infections are common [3, 5, 6]. Compelling evidence from the few studies that have investigated the effect of malaria-helminths co-infections suggests that an interaction between the two diseases might influence the clinical outcome of the involved diseases. It has been reported previously that helminths increase vulnerability to malaria [11, 12], increase malaria parasitemia [13, 14], with a subsequent increase in malaria disease severity [15, 16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.