Abstract

Vaccination therapy of AD animal models and patients strongly suggests an active role of brain mononuclear phagocytes in immune-mediated clearance of amyloid-beta peptides (Abeta) in brain. Although Abeta uptake by macrophages can be regulated by pro- and anti-inflammatory cytokines, their effects on macrophage-mediated Abeta degradation are poorly understood. To better understand this mechanism of degradation, we examined whether pro- and anti-inflammatory cytokines affect the degradation of Abeta using primary cultured human monocyte-derived macrophages (MDM) and microglia using pulse-chase analysis of fibrillar and oligomer (125)I-Abeta40 and Abeta42. Initial uptake of fibrillar Abeta40 and Abeta42 was 40% and its degradation was saturated by 120 h in both MDM and microglia, compared with an initial uptake of oligomeric Abeta less than 0.5% and saturation of degradation within 24 h. IFN-gamma increased the intracellular retention of fibrillar Abeta40 and Abeta42 by inhibiting degradation, whereas IL-4, IL-10, and TGF-beta1, but not IL-13 and IL-27, enhanced degradation. Fibrillar Abeta degradation in MDM is sensitive to lysosomal and insulin degrading enzyme inhibitors but insensitive to proteasomal and neprilysin inhibitors. IFN-gamma and TNF-alpha directly reduced the expression of insulin degrading enzyme and chaperone molecules (heat shock protein 70 and heat shock cognate protein 70), which are involved in refolding of aggregated proteins. Coculture of MDM with activated, but not naive T cells, suppressed Abeta degradation in MDM, which was partially blocked by a combination of neutralizing Abs against proinflammatory cytokines. These data suggest that proinflammatory cytokines suppress Abeta degradation in MDM, whereas select anti-inflammatory and regulatory cytokines antagonize these effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.