Abstract

Transmigration of neutrophils (PMNs) through endothelial cell tight junctions is a critical stage in the tissue injury of ischemia-reperfusion (I/R). Although cytokines are released in I/R, it is unclear whether cytokines directly increase permeability or this phenomenon requires both expression of cell adhesion molecules and PMN adhesion-activation. We exposed confluent monolayers of human umbilical vein endothelial cells to physiologic concentrations of interleukin-1 (10 pg/ml) and tumor necrosis factor-alpha (10 pg/ml) in the absence of PMNs. Tight junction permeability was quantified with both transendothelial electrical resistance and albumin flux, whereas expression of endothelial-leukocyte adhesion molecule-1 was measured by flow cytometry (t test p < 0.05). Stimulation with tumor necrosis factor-alpha or interleukin-1 produced maximal transendothelial electrical resistance decreases at 12 hours with return to baseline at 24 hours. Increases in albumin flux began at 6 hours, with maximum effects at 24 hours. These changes occurred soon after maximal expression of endothelial-leukocyte adhesion molecule-1 at 4 hours. Cytokines induced increases in both cell adhesion molecule expression and endothelial permeability. This sequence of events is consistent with direct cytokine effects on cytoarchitecture, because it occurred without the adhesion-activation of PMNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.