Abstract

To test the hypothesis that dialysis using a new large pore membrane would achieve effective cytokine removal, blood from six volunteers was incubated with endotoxin (1 mg) and then circulated through a closed circuit with a polyamide membrane (nominal cut-off: 100 kDa). Hemodialysis was conducted at 1 or 9 L/hr of dialysate flow at the start of circulation and after 2 and 4 hours. The peak dialysate/plasma concentration ratios were 0.92 for interleukin (IL)-1beta, 0.67 for IL-6, 0.94 for IL-8, 0.33 for tumor necrosis factor (TNF)-a, and 0.11 for albumin. The dialysate/plasma ratios for all cytokines and albumin were decreased with increased dialysate flow from 1 to 9 L/hr (p < 0.05). Clearances for IL-1beta, IL-6, and IL-8, however, were significantly improved with increased dialysate flow (p < 0.01). There was no increase in TNF-a clearance (not significant) and a decrease in albumin clearance (p < 0.01). The peak clearance at 9 L/hr was 33 ml/min for IL-1beta, 19 for IL-6, 51 for IL-8, 11 for TNF-alpha, and 1.2 for albumin. No adsorption of cytokines was observed. We conclude that cytokine dialysis is achievable through a membrane with a high cut-off point with negligible albumin loss. These findings support the technical feasibility of this new approach to blood purification in sepsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call