Abstract

: Phagocytosis of particulate wear debris from arthroplasties by macrophages induces an inflammatory response that has been linked to implant loosening and premature failure of artificial joints. Inflammatory mediators released by phagocytic macrophages such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and prostaglandin E(2) (PGE(2)) are believed to play a central role in the pathogenesis of aseptic loosening. The objective of this study was to characterize titanium alloy particulates that closely match wear debris found around joint arthroplasties and to study their effects on the biosynthesis of inflammatory mediators by cultured monocytes. Peripheral blood monocytes were isolated from healthy human volunteers. Monocytes were cultured in 96-well plates for 24 h, washed, and exposed to three concentrations of titanium particulates and controls from 18-24 h. Supernatants were assayed for TNF-alpha, IL-1beta, IL-6, and PGE(2) activity. Energy dispersive X-ray spectroscopy (EDX) verified the titanium alloy to be Ti6A14V. Scanning electron microscopy (SEM) analysis showed significant titanium particulate heterogeneity with approximately 95% of the particles <1 µm in diameter. SEM and EDX technology was useful in the characterization of the titanium particulates utilized for in vitro models of titanium-induced cytokine release by monocytes. Incubation of titanium particulates (in concentrations similar to those found around loosened prosthetic joints) with cultured monocytes significantly increased their production of TNF-alpha, IL-1beta, and PGE(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.