Abstract

The mammalian ureter contains a water-tight epithelium surrounded by smooth muscle. Key molecules have been defined which regulate ureteric bud initiation and drive the differentiation of ureteric mesenchyme into peristaltic smooth muscle. Less is known about mechanisms underlying the developmental patterning of the multilayered epithelium characterising the mature ureter. In skin, which also contains a multilayered epithelium, cytokeratin 15 (CK15), an acidic intermediate filament protein, marks cells whose progeny contribute to epidermal regeneration following wounding. Moreover, CK15+ precursor cells in skin can give rise to basal cell carcinomas. In the current study, using transcriptome microarrays of embryonic wild type mouse ureters, Krt15, coding for CK15, was detected. Quantitative polymerase chain reaction analyses confirmed the initial finding and demonstrated that Krt15 levels increased during the fetal period when the ureteric epithelium becomes multilayered. CK15 protein was undetectable in the ureteric bud, the rudiment from which the ureter grows. Nevertheless, later in fetal development, CK15 was immunodetected in a subset of basal urothelial cells in the ureteric stalk. Superficial epithelial cells, including those positive for the differentiation marker uroplakin III, were CK15-. Transformation-related protein 63 (P63) has been implicated in epithelial differentiation in murine fetal urinary bladders. In wild type fetal ureters, CK15+ cells were positive for P63, and p63 homozygous null mutant ureters lacked CK15+ cells. In these mutant ureters, sections of the urothelium were monolayered versus the uniform multilayering found in wild type littermates. Human urothelial cell carcinomas account for considerable morbidity and mortality. CK15 was upregulated in a subset of invasive ureteric and urinary bladder cancers. Thus, in ureter development, the absence of CK15 is associated with a structurally simplified urothelium whereas, postnatally, increased CK15 levels feature in malignant urothelial overgrowth. CK15 may be a novel marker for urinary tract epithelial precursor cells.

Highlights

  • The mammalian ureter acts as a conduit, receiving urine from the kidney and propelling urine distally towards the urinary bladder

  • The results show that, during development, the appearance of cytokeratin 15 (CK15) coincides with the formation of a multilayered urothelium whereas, postnatally, increased CK15 levels sometimes feature in malignant urothelial overgrowth

  • Using Affymetrix GeneChip Mouse Genome 430 2.0 microarrays, we found that transcript levels of numerous cytokeratins altered between these two time points

Read more

Summary

Introduction

The mammalian ureter acts as a conduit, receiving urine from the kidney and propelling urine distally towards the urinary bladder. The extra-renal section of the fetal ureteric stalk elongates and its primitive epithelium acts as a signalling centre, releasing sonic hedgehog which, acting with bone morphogenetic protein-4 and teashirt-3, induces nearby mesenchymal cells to differentiate into layers of smooth muscle. The latter begin to undergo peristalsis, coinciding with the onset of production of urine by the metanephric kidney [6,7]. The results show that, during development, the appearance of CK15 coincides with the formation of a multilayered urothelium whereas, postnatally, increased CK15 levels sometimes feature in malignant urothelial overgrowth

Materials and Methods
Results
Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.