Abstract

In recent years, carbon nanomaterials, including fullerene C60 is regarded as the building block in nanotechnology because of its widespread use in medicine, industry, cosmetics and commercial products. Despite the special properties, several reports have raised public health concerns due to the unknown and practically unexplored toxic effects of nanomaterials. However, there have been relatively few studies regarding the genotoxic responses of fullerene C60in vivo. Genotoxic effects of DMSO-solublized C60 nanomaterial suspension at sublethal concentrations (5 and 10 mg/L) were investigated on adult freshwater fish, Anabas testudineus using micronucleus and comet assays. An assessment of micronucleus induction showed severe cytoplasmic and nuclear abnormalities in erythrocytes, gill and liver cells. Abnormalities in cytoplasm were identified as formation of sticky cells, vacuolated cytoplasm, cytoplasmic degeneration, echinocyte, acanthocyte, anisochromatic cells and abnormal erythrocyte membrane. The nuclear abnormalities included micronucleus, binucleated cells, nuclear buds, irregular nucleus, vacuolated, notched and serrated nucleus in the erythrocytes compared to the control groups. Similarly, significant increase (P < 0.05) in micronucleus frequencies were observed in gill and liver cells. The high frequency of micronucleus was observed in the gill cells followed by liver and erythrocytes, respectively, at both sublethal concentrations, and the severity was duration and concentration-dependent. In comet assay, significant increase (P < 0.05) in DNA damage was observed using the comet parameter, percent tail DNA. The highest level of comet damage with grade 3 was observed in blood, gill and liver cells on increase in duration and concentration when compared to the respective control groups. Thus the results revealed that fullerene C60 nanomaterials may pose risk to aquatic organisms, especially fish, by the induction of genotoxicity. Further studies are warranted to provide new insights on the mechanisms and consequences of C60 nanomaterials interactions with biological membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call