Abstract

Cytogenetic aspects of the cryptobranchid salamander Andrias davidianus of western China have been studied, including chromosome number and morphology, C-band patterns, meiosis, and the chromosomal localization of ribosomal 5S RNA genes. Our data regarding chromosome number (2n=60) and general chromosome morphology largely confirm the results of Morescalchi et al. (1977). The karyotype consists of 16 pairs of “macrochromosomes” that decrease gradually in relative length to 14 pairs of “microchromosomes”. Telocentric chromosomes are a conspicuous feature of the karyotype, representing more than half the genome. Differential staining reveals that all of the chromosomes, except four pairs of microchromosomes, have C-band heterochromatin in their centromeric regions, the amount varying irrespective of chromosome size. Faint bands of interstitial and telomeric C-band heterochromatin are found in mitotic chromosomes but are not seen in meiotic preparations. In C-banded mitotic preparations from a female, one of the smallest macrochromosome pairs is heteromorphic in respect to C-band heterochromatin and centromere position. In situ hybridization of an iodinated 5S RNA probe to meiotic chromosome preparations reveals that this repeated gene is clustered near the telomeric region of chromosome 7, a medium size telocentric, a location corresponding to a band of heterochromatin. Studies of spermatocytes indicate that the process of meiosis in A. davidianus closely resembles that of more advanced salamanders, and that the microchromosomes are meiotically stable. The significance of microchromosomes and chromosome morphology in the reorganization of salamander genomes during evolution is discussed on the basis of cytogenetic data available for A. davidianus and various other primitive and advanced salamanders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call