Abstract

We determined the kinetics of the induction of chromosomal aberrations and micronuclei (MN) by mitomycin C (MMC, 0.1 &mgr;g/ml) in Chinese hamster ovary (CHO) cells treated with cytochalasin B (Cyt-B, 3 &mgr;g/ml). In cells treated with Cyt-B as well as with Cyt-B plus MMC the highest yield of binucleated cells was obtained 24 h after treatment. After 40 h of treatment with Cyt-B the frequency of MN in binucleated cells was significantly higher than that observed at previous times in the same cultures as well as in controls. In cultures treated with MMC the frequency of MN increased with time, reaching the highest value at 24 h. The frequency of chromosomal aberrations was also significantly higher in cells treated both with Cyt-B and Cyt-B plus MMC than in controls and exceeded that of MN in parallel cultures. These data confirm the capacity of MMC to induce chromosomal alterations in mammalian cells; in particular they indicate that Cyt-B is able to induce cytogenetic effects in CHO cells. Using immunofluorescence microscopy, after reaction with CREST antikinetochore antibodies, we found that in cells treated with Cyt-B or Cyt-B plus MMC the frequency of MN without kinetochore was, respectively, about 70 and 85%, indicating that under our experimental conditions MN originate mainly from acentric chromatid fragments. Present data suggest that the method based on the blockage of cytokinesis by Cyt-B normally used in the MN assay should be reconsidered. Copyright 1995 S. Karger AG, Basel

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.