Abstract

Vanadium is a strategic metal that has many important industrial applications and is generated by the use of burning fossil fuels, which inevitably leads to their release into the environment, mainly in the form of oxides. The wastes generated by their use represent a major health hazard. Furthermore, it has attracted attention because several genotoxicity studies have shown that some vanadium compounds can affect DNA; among the most studied compounds is vanadium pentoxide, but studies in vivo with oxidation states IV and III are scarce and controversial. In this study, the genotoxic and cytotoxic potential of vanadium oxides was investigated in mouse bone marrow cells using structural chromosomal aberration (SCA) and mitotic index (MI) test systems. Three groups were administered vanadium(IV) tetraoxide (V2O4) intraperitoneally at 4.7, 9.4 or 18.8 mg/kg, and three groups were administered vanadium(III) trioxide (V2O3) at 4.22, 8.46 or 16.93 mg/kg body weight. The control group was treated with sterile water, and the positive control group was treated with cadmium(II) chloride (CdCl2). After 24 h, all doses of vanadium compounds increased the percentage of cells with SCA and decreased the MI. Our results demonstrated that under the present experimental conditions and doses, treatment with V2O4 and V2O3 induces chromosomal aberrations and alters cell division in the bone marrow of mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.