Abstract

The biological effects of microwaves on living organisms remain highly controversial. Although some reports have suggested that microwaves may be directly or indirectly genotoxic, a direct action is unlikely because the low energy of microwave photons makes them unable to cause single-strand breaks in DNA. In this work, we examined the possible clastogenic properties of microwaves (2.5 and 10.5 GHz) on blood lymphocytes in vitro by monitoring the frequency of chromosomal aberrations. We also investigated whether blood cells showed increased radiosensitivity or radioresistance when pretreated with the microwaves and then irradiated with gamma radiation. There was no significant difference in the frequency of chromosomal aberrations between cells which had or had not been treated with microwaves. Control cells had a mean frequency of 0.013 aberrations per cell compared to 0.010 and 0.011 aberrations per cell in the microwave-exposed samples. Nor was there any alteration in the radiosensitivity of cells pretreated with microwaves. Gamma irradiated cells showed a mean frequency of 0.279 aberrations per cell compared to 0.343 and 0.310 aberrations per cell in samples pretreated with microwaves. However, cell mortality increased markedly after exposure to microwaves. The results suggest that microwaves do not interact directly or indirectly with chromosomes, although they may target other cell structures, such as cell membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.