Abstract

The karyotype of the endangered fish Anaecypris hispanica was revisited using advanced cytogenetic techniques to elucidate its putative relationship with the paternal ancestor of the hybrid complex Squalius alburnoides and to clarify some of the recently described cytogenetic patterns of the complex. The results of chromomycin A3 and Ag staining, as well as fluorescent in situ hybridization with 28S and 5S rDNA and the (TTAGGG)n telomeric probes, were compared with the patterns observed in specimens of the all-male nonhybrid lineage of S. alburnoides complex, which is considered to reconstitute the nuclear genome of the probably extinct paternal ancestor. Several cytogenetic features observed in A. hispanica specimens were indeed shared by S. alburnoides nuclear nonhybrid males, supporting the hypothesis of a close evolutionary link between A. hispanica and the paternal ancestor of the complex. The genomic rearrangements involving 28S rDNA sites previously described in the S. alburnoides complex and in its maternal ancestor (S. pyrenaicus) were not detected in A. hispanica; they are, therefore, probably due to mechanisms related to hybridization and polyploidy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.