Abstract
High dimensional mass and flow cytometry (HDCyto) experiments have become a method of choice for high throughput interrogation and characterization of cell populations.Here, we present an R-based pipeline for differential analyses of HDCyto data, largely based on Bioconductor packages. We computationally define cell populations using FlowSOM clustering, and facilitate an optional but reproducible strategy for manual merging of algorithm-generated clusters. Our workflow offers different analysis paths, including association of cell type abundance with a phenotype or changes in signaling markers within specific subpopulations, or differential analyses of aggregated signals. Importantly, the differential analyses we show are based on regression frameworks where the HDCyto data is the response; thus, we are able to model arbitrary experimental designs, such as those with batch effects, paired designs and so on. In particular, we apply generalized linear mixed models to analyses of cell population abundance or cell-population-specific analyses of signaling markers, allowing overdispersion in cell count or aggregated signals across samples to be appropriately modeled. To support the formal statistical analyses, we encourage exploratory data analysis at every step, including quality control (e.g. multi-dimensional scaling plots), reporting of clustering results (dimensionality reduction, heatmaps with dendrograms) and differential analyses (e.g. plots of aggregated signals).
Highlights
Flow cytometry and the more recently introduced CyTOF are high-throughput technologies that measure protein abundance on the surface or within cells
CyTOF utilizes antibodies tagged with metal isotopes from the lanthanide series, which have favorable chemistry and do not occur in biological systems; abundances per cell are recorded with a time-of-flight mass spectrometer
To be able to analyze arbitrary experimental designs, we show how to conduct the differential analysis of cell population abundances using the generalized linear mixed models (GLMM) and of marker intensities using linear models (LM) and linear mixed models (LMM)
Summary
CyTOF workflow: Differential discovery in high-throughput high-dimensional cytometry datasets [version 1; peer review:. Hartmann 3, Silvia Guglietta, Burkhard Becher, Mitchell P.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.