Abstract

Biologically safe Ti-based quaternary Ti-Nb-Zr-Si thin film metallic glass (TFMG) was fabricated by sputtering on Titanium alloy (Ti6Al4V or Ti alloy) substrates. A preliminary assessment regarding glass forming ability, thermal stability and corrosion behavior was performed. The amorphous nature of the film is evidenced from the X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) and Selected Area Electron Diffraction (SAED) patterns. Ion scattering spectroscopy (ISS) and X-ray Photoelectron Spectroscopy (XPS) were used to analyse the chemical composition of surface which indicated oxygen on the top surface of the film and confirms the presence of Ti, Nb, Si, Zr without any other impurities. The surface morphology of the film showed a smooth surface as observed from scanning electron microscope (SEM) and atomic force microscope (AFM) analysis. It is found that the TFMG can sustain in the body-fluid, exhibiting superior corrosion resistance and electrochemical stability than the bare titanium. The cytotoxicity studies with L929 fibroblast cells showed that coatings were graded as zero and non-cytotoxic in nature. No hemolysis was observed on the coated surface indicating a better hemocompatibility. Assay using SaOS-2 bone cells showed good growth on the coated surfaces. The calcium assay showed that the SaOS-2 cells grown and differentiated on the control (Tissue Culture Polystyrene) TCPS surface had the highest mineral level. Higher alkaline phosphatase activity is obtained in SaOS-2 osteoblast cell cultures on TFMG than the control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.