Abstract
The recently developed synthetic oligonucleotides referred to as "click" nucleic acids (CNAs) are promising due to their relatively simple synthesis based on thiol-X reactions with numerous potential applications in biotechnology, biodetection, gene silencing, and drug delivery. Here, the cytocompatibility and cellular uptake of rhodamine tagged, PEGylated CNA copolymers (PEG-CNA-RHO) were evaluated. NIH 3T3 fibroblast cells treated for 1 h with 1, 10, or 100 μg/mL PEG-CNA-RHO maintained an average cell viability of 86%, which was not significantly different from the untreated control. Cellular uptake of PEG-CNA-RHO was detected within 30 s, and the amount internalized increased over the course of 1 h. Moreover, these copolymers were internalized within cells to a higher degree than controls consisting of either rhodamine tagged PEG or the rhodamine alone. Uptake was not affected by temperature (i.e., 4 or 37 °C), suggesting a passive uptake mechanism. Subcellular colocalization analysis failed to indicate significant correlations between the internalized PEG-CNA-RHO and the organelles examined (mitochondria, endoplasmic reticulum, endosomes and lysosomes). These results indicate that CNA copolymers are cytocompatible and are readily internalized by cells, supporting the idea that CNAs are a promising alternative to DNA in antisense therapy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.