Abstract

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a class of exponentially increased natural products with characteristic chemical structures, topologies, and biosynthetic mechanisms as well as exceptional bioactivities including antibacteria, antitumors, and antiviruses. The biosynthesis of RiPP proceeds via a ribosomally assembled precursor peptide that undergoes varied post-translational modifications to generate a mature peptide. Cytochrome P450 (CYP or P450) monooxygenases are a superfamily of heme-containing enzymes that span a wide range of secondary metabolite biosynthetic pathways due to their broad substrate scopes and excellent catalytic versatility. In contrast to the enormous quantities of RiPPs and P450s, the P450 associated RiPP biosynthesis is comparatively limited, with most of their functions and timings remaining mysterious. Herein, this Review aims to provide an overview on the striking roles of P450s in RiPP biosyntheses uncovered to date and to illustrate their remarkable functions, mechanisms, as well as remaining challenges. This will shed light on novel P450 discovery and characterizations in RiPP biosyntheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.