Abstract

Bark beetles oxidize the defensive allelochemicals from their host trees to both detoxify and convert these materials into components of their pheromone system. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYPs). Sixty-four sequences coding for P450s were identified, and most of the transcripts were found to be expressed in the larvae, pupae and adults of Dendroctonus armandi. To gain information on how these genes help D. armandi overcome the host defense, differential transcript levels of the CYP genes were observed between sexes and within the sexes. Significant differences were observed among developmental stages, in feeding on the phloem of Pinus armandi and in exposure to stimuli ((±)-α-pinene, (S)-(−)-α-pinene, (S)-(−)-β-pinene, (+)-3-carene, (±)-limonene and turpentine oil) for 8 h. We investigated the effect of sex and generations on the survivorship of individual D. armandi that were exposed to host volatiles at concentrations comparable to constitutive and induced levels of defense using fumigant exposure to understand the ability of the beetles to tolerate host defensive chemicals. The differential transcript accumulation patterns of CYP genes of these bark beetle provided insight into the ecological interactions of D. armandi with its host pine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.