Abstract
The cytochrome P-450-mediated reactions of the synthetic stilbene estrogen (E)-diethylstilbestrol (DES) and of 2-hydroxyestradiol have been investigated in vitro. Depending on the cofactor used, microsomal enzymes catalyzed reductions and/or oxidations of the estrogens: Phenobarbital-induced rat liver microsomes catalyzed the oxidation of DES to 4',4"-diethylstilbestrol quinone (DES quinone) with cumene hydroperoxide as cofactor. The quinone was unstable and spontaneously rearranged to (Z,Z)-dienestrol. DES quinone was reduced to a mixture of E- and Z-isomers of DES by NADPH catalyzed by purified cytochrome P-450 reductase. After rearrangement of the quinone to (Z,Z)-dienestrol, reduction reactions did not proceed. Rat liver microsomes and NADPH catalyzed the conversion of DES to (Z,Z)-dienestrol and (Z)-DES, but DES quinone could not be detected. The reactions described provide direct evidence for microsome-mediated redox cycling of estrogens. Although DES quinone could not be detected in the incubation of DES, microsomes, and NADPH as cofactor, the intermediacy of the quinone is demonstrated by the formation of (Z,Z)-dienestrol, the marker product for oxidation. The quinone could not be detected because it was rapidly reduced to DES and its Z-isomer. Microsome-mediated redox cycling between 2-hydroxyestradiol and the corresponding quinone was also demonstrated. Using cumene hydroperoxide as cofactor, the oxidation to the quinone was favored, while with NADPH as cofactor the reduction to 2-hydroxyestradiol was preferred. It is postulated that microsome-mediated redox cycling of estrogens plays a role in hormonal carcinogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.