Abstract
Accumulating salinity in soil critically affected growth, development, and yield in plant. However, the mechanisms of plant against salt stress largely remain unknown. Herein, we identified a gene named SmCYP78A7a, which encoded a cytochrome P450 monooxygenase and belonged to the CYP78A sub-family, and its transcript level was significantly up-regulated by salt stress and down-regulated by dehydration stress. SmCYP78A7a located in the endoplasmic reticulum. Silencing of SmCYP78A7a enhanced susceptibility of eggplant to salt stress, and significantly down-regulated the transcript levels of salt stress defense related genes SmGSTU10 and SmWRKY11 as well as increased hydrogen peroxide (H2O2) content and decreased catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) enzyme activities. In addition, SmCYP78A7a transient expression enhanced eggplant tolerance to salt stress. By chromatin immunoprecipitation PCR (ChIP-PCR), luciferase reporter assay, and electrophoretic mobility shift assay (EMSA), SmWRKY11 activated SmCYP78A7a expression by directly binding to the W-box 6–8 (W-box 6, W-box 7, and W-box 8) within SmCYP78A7a promoter to confer eggplant tolerance to salt stress. In summary, our finds reveal that SmCYP78A7a positively functions in eggplant response to salt stress via forming a positive feedback loop with SmWRKY11, and provide a new insight into regulatory mechanisms of eggplant to salt stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.