Abstract
Flavonoids can not only help plants resist ultraviolet and pathogen attacks, but also show a wide range of therapeutic prospects for human health, including antioxidant, anti-inflammatory and anti-hypertension. Tartary buckwheat, as medicinal and food homologous crop, is rich in flavonoids, among which rutin may prevent liver damage. The one of the major objectives of Tartary buckwheat breeding is to cultivate varieties that have large fruits, high flavonoids and nutrient contents. Members of the cytochrome P450 monooxygenase (CYP) superfamily play a vital role in the synthesis of flavonoids, plant growth and development. Whole-genome analyses of the CYP family have been performed in several plants, but the CYP family has not been characterized in Tartary buckwheat. In this study, 285 FtCYPs were identified from the genome to improve the rutin content and quality of Tartary buckwheat. By exploring the structure, motif composition, tandem and segmental duplication events of FtCYPs, as well as evolutionary relationships with CYPs in other plants, we preliminarily screened potential FtCYPs regulating rutin synthesis, growth and development. The expression levels of the FtCYPs in different organs and fruits at various periods were measured. This study provides a solid foundation for verifying the function of FtCYPs, cultivating high rutin Tartary buckwheat varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.