Abstract

Cotton plants accumulate phytotoxins, such as gossypol and related sesquiterpene aldehydes, to resist insect herbivores. The survival of insects exposed to toxic secondary metabolites depends on the detoxification metabolism mediated by limited groups of cytochrome P450. Gossypol has an antibiotic effect on Aphis gossypii, and as the concentrations of gossypol were increased in the present study, the mortality of cotton aphids increased from 4 to 28%. The fecundity of the cotton aphids exposed to gossypol was also significantly reduced compared with the control. The transcriptional levels of CYP6DA2 in cotton aphids were significantly induced when exposed to gossypol, and knockdown of the CYP6DA2 transcripts by RNA interference (RNAi) significantly increased the toxicity of gossypol to cotton aphids. To further understand the gossypol regulatory cascade, the 5'-flanking promoter sequences of CYP6DA2 were isolated with a genome walker, and the promoter was very active and was inducible by gossypol. Co-transfection of the cap 'n' collar isoform C (CncC) and CYP6DA2 promoters dramatically increased the expression of CYP6DA2, and suppression of the CncC transcripts by RNAi significantly decreased the expression levels of CYP6DA2, and significantly increased the toxicity of gossypol to cotton aphids. Thus, the transcriptional regulation of CYP6DA2 involved the transcriptional factor CncC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call