Abstract

The mechanism by which the hepatic cytochrome P-450 (Cyt. P-450) containing mixed-function oxidase system oxidizes the analgesic drug paracetamol (PAR) to a hepatotoxic metabolite was studied. Since previous studies excluded the possibility of oxygenation of PAR, three other mechanisms, namely direct 1-electron oxidation by a Cyt. P-450-ferrousdioxygen complex under concomitant formation of H 2O 2 to N-acetyl- p-semiquinone imine (NAPSQI), direct 2-electron oxidation by a Cyt. P-450-ferric-oxene complex to N-acetyl- p-benzoquinone imine (NAPQI) and indirect oxidation by active oxygen species released from Cyt. P-450, were considered. Indirect oxidation by active oxygen species was not involved, as active oxygen scavengers such as superoxide dismutase, catalase and DMSO did not affect the oxidation of PAR in hepatic microsomes. No reaction products characteristic for a direct 1-electron oxidation of PAR by Cyt. P-450 were observed: neither NAPSQI radical formation was detectable by ESR, nor PAR-dimer formation, nor stimulation of the microsomal H 2O 2 production was found to occur. In fact, PAR inhibited the spontaneous microsomal H 2O 2 formation. Studies on the reactions of NAPSQI with glutathione (GSH) revealed that NAPSQI hardly conjugated with GSH to a 3-glutathionyl-paracetamol conjugate (PAR-GSH) conjugate. The reactions of the elusive reactive metabolite formed during microsomal oxidation of PAR in the presence of GSH closely resembled those of synthetic NAPQI: both PAR-GSH and oxidized glutathione (GSSG) formation occurred. Furthermore, in agreement with a 2-electron oxidation hypothesis, iodosobenzene-dependent oxidation of PAR by cyt. P-450 in the presence of GSH resulted in the formation of the PAR-GSH conjugate. It is concluded that bioactivation of PAR by the Cyt. P-450 containing mixed-function oxidase system consists of a direct 2-electron oxidation to NAPQI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.