Abstract

Perazine (PER) is a phenothiazine antipsychotic drug frequently used in Germany that undergoes extensive metabolism. To anticipate metabolic drug interactions and to explore the relevance of polymorphisms of metabolic enzymes, perazine-N-demethylation and perazine-N-oxidation were investigated in vitro using human liver microsomes and cDNA expressed enzymes. CYP3A4 and CYP2C9 were identified as the major enzymes mediating PER-N-demethylation. At 10 microM PER, a concentration consistent with anticipated in vivo liver concentrations, CYP3A4 and CYP2C9 contributed 50% and 35%, respectively, to PER-N-demethylation. With increasing PER concentrations, contribution of CYP2C9 decreased and CYP3A4 became more important. In human liver microsomes, PER-N-demethylation was inhibited by ketoconazole (>40%) and sulfaphenazole (16%). Allelic variants of recombinant CYP2C9 showed differences in PER-N-demethylase activity. The wild type allele CYP2C9*1 was the most active variant. Maximal activities of CYP2C9*2 and CYP2C9*3 were 88% and 18%, respectively, compared to the wild type activity. Perazine-N-oxidation was mainly mediated by FMO3. In the absence of NADPH, heat treatment of microsomes abolished PER-N-oxidase activity. Methimazole inhibited PER-N-oxidation, while CYP specific inhibitors had no inhibitory effect. Perazine is a potent inhibitor of dextromethorphan-O-demethylase, S-mephenytoin-hydroxylase, alprazolam-4-hydroxylase, phenacetin-O-deethylase and tolbutamide-hydroxylase activity in human liver microsomes. Alterations in the activity of CYP3A4, CYP2C9 and FMO3 through genetic polymorphisms, enzyme induction or inhibition bear the potential to cause clinically significant changes in perazine clearance. PER may alter the clearance of coadministered compounds metabolized by CYP2D6, CYP2C19, CYP2C9, CYP3A4 and CYP1A2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call