Abstract

The flexible plant mitochondrial electron transport chain with cytochrome c oxidase (COX) and alternative oxidase (AOX) pathways is known to be modulated by abiotic stress conditions. The effect of salinity stress on the mitochondrial electron transport chain and the importance of COX and AOX pathways for optimization of photosynthesis under salinity stress conditions is not clearly understood. In the current study, importance of COX and AOX pathways for photosynthetic performance of pea plants (Pisum sativum L. Pea Arkel cv) was analysed by using the mitochondrial electron transport chain inhibitors Antimycin A (AA) and salicylhydroxamic acid (SHAM) which restrict the electron flow through COX and AOX pathways respectively. Salinity stress resulted in decreased CO2 assimilation rates, leaf stomatal conductance, transpiration and leaf intercellular CO2 concentration in a stress dependent manner. Superimposition of leaves of salt stressed plants with AA and SHAM caused cellular H2O2 and O2− accumulation along with cell death. Additionally, aggravation in decrease of CO2 assimilation rates, leaf stomatal conductance, transpiration and leaf intercellular CO2 concentration upon superimposition with AA and SHAM during salinity stress suggests the importance of mitochondrial oxidative electron transport for photosynthesis. Increased expression of AOX1a and AOX2 transcripts along with AOX protein levels indicated up regulation of AOX pathway in leaves during salinity stress. Chlorophyll fluorescence measurements revealed enhanced damage to Photosystem (PS) II in the presence of AA and SHAM during salinity stress. Results suggested the beneficial role of COX and AOX pathways for optimal photosynthetic performance in pea leaves during salinity stress conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call