Abstract

Mitochondrial DNA at the cytochrome oxidase 1 (Co-1) gene region was sequenced for six flatfish species (in total, 11 sequences of at least 539 base pairs) from the Far East of Russia and compared with other sequences of Pleuronectiformes, comprising altogether 26 flatfish sequences and two outgroup sequences (Perciformes). An analysis of the protein-coding Co-1 gene revealed a statistically substantiated bias in (T + C):(A + G) content, supporting earlier findings. Average scores of the p-distances for different scales of the evolutionary history at the Co-1 gene revealed a clear pattern of increased nucleotide diversity at four different levels: (1) intraspecies, (2) intragenus, (3) intrafamily, and (4) intra-order. Scores of average p-distances of the four categories of comparison in flatfishes were (1) 0.17 +/- 0.09%, (2) 10.60 +/- 1.57%, (3) 12.40 +/- 0.27%, and (4) 19.93 +/- 0.05%, respectively (mean +/- standard error). These data jointly with current knowledge support the concept that speciation in the order Pleuronectiformes mostly follows a geographic mode through accumulation of numerous small genetic changes over a long period of time. A phylogenetic tree for 26 sequences of flatfishes and two other fishes belonging to ray-finned fishes (Actinopterigii) was developed using the Co-1 gene and four different analytical approaches: neighbour-joining, Bayesian (BA), maximum parsimony (MP), and maximum likelihood. The analysis revealed a monophyletic origin for the representatives of Pleuronectidae, which is the principal flatfish family investigated (73-100% support level in our MP and BA analyses). According to the current and literary data, the monophyletic origin for the six compared flatfish families was well supported. Species identification on a per-individual basis (barcoding tagging) was high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call