Abstract

One of the main functions of enzyme complexes that constitute electron transport (respiratory) chains of organisms is to maintain cellular redox homeostasis by oxidizing reducing equivalents, NADH and quinol. Cytochrome bd is a unique terminal oxidase of the chains of many bacteria including pathogenic species. This redox enzyme couples the oxidation of ubiquinol or menaquinol by molecular oxygen to the generation of proton motive force, a universal energy currency. The latter is used by the organism to produce ATP, another cellular energy currency, via oxidative phosphorylation. Escherichia coli contains two bd–type oxidases, bd-I and bd-II, encoded by the cydAB and appCB operons, respectively. Surprisingly, both bd enzymes make a further contribution to molecular mechanisms of maintaining the appropriate redox balance in the bacterial cell by means of elimination of reactive oxygen species, such as hydrogen peroxide. This review summarizes recent data on the redox-modulated H2O2-scavenging activities of cytochromes bd-I and bd-II from E. coli. The possibility of such antioxidant properties in cytochromes bd from other bacteria is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.