Abstract

Percoll-purified rat liver mitochondria were shown to contain BAX dimer and rapidly (<2 min) release 5-10% of their cytochrome c when incubated in a standard KCl incubation medium under energized conditions. This release was not accompanied by release of adenylate kinase (AK), another intermembrane protein, and was not inhibited by Mg(2+), dATP, inhibitors of the permeability transition or ligands of the peripheral benzodiazepine receptor. However, release was greatly reduced by the presence of 5% (w/v) dextran (40 kDa), which caused a decrease in the light scattering (A(520)) of mitochondrial suspensions. Dextran also inhibited both mitochondrial oxidation of exogenous ferrocytochrome c in the presence of rotenone and antimycin, and respiratory-chain-driven reduction of exogenous ferricytochrome c. Hypo-osmotic medium or digitonin treatment of mitochondria caused a large additional release of both cytochrome c and AK that was not blocked by dextran. Polyaspartate, which stabilizes the low conductance state of the voltage-dependent anion channel (VDAC), increased cytochrome c release. VDAC and BAX are both found at the contact sites between the inner and outer membranes and dextran is known to stabilize these contact sites in isolated mitochondria. Thus our data suggest that regulation of a specific permeability pathway for cytochrome c may be mediated by changes in protein-protein interactions within contact sites. The adenine nucleotide translocase is known to bind to VDAC and thus provides an additional link between the specific cytochrome c release pathway and the permeability transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.