Abstract

The spectrophotometric oxidation of horse heart ferrocytochrome c was examined by use of the particulate electron transport fraction (R(3)) of Azotobacter vinelandii strain O. Unlike cytochrome c, purified preparations of native Azotobacter cytochromes c(4) + c(5) were oxidized only slowly by the electron transport fraction. The oxidation of mammalian cytochrome c proceeded at an appreciable rate and displayed "apparent" first-order kinetics at a pH optimum of 9.0 with tris(hydroxymethyl)aminomethane-chloride buffer. The calculated V(max) value was 0.22 mumole of cytochrome c oxidized per min per mg of protein (25 C) and a K(m) value for cytochrome c of 2.3 x 10(-5)m was obtained. Ferricytochrome c was a "strict" competitive inhibitor for this oxidation. Cytochrome c oxidation by the Azotobacter electron transport system was markedly sensitive to cyanide, azide, and hydroxylamine, although carbon monoxide inhibition could not be demonstrated. It was sensitive also to high concentrations of phosphate, ethylenediaminetetraacetate, and some metal cations. "Aging" or prolonged storage of the Azotobacter R(3) fraction, at 4 C for 10 days, resulted in a threefold increase in specific activity. The cytochrome c peroxidase type of reaction did not occur with the R(3) electron transport fraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.