Abstract

Inner membranes were prepared from Escherichia coli strain RG 145, which is deficient in cytochrome bd, but overexpresses cytochrome bo [Au and Gennis (1987) J. Bacteriol. 169, 3237-3242]. The latter was purified 7-fold by extracting the membranes with octyl beta-D-glucopyranoside, followed by chromatography on DEAE-Sepharose, yielding 150 mg of protein/150 g wet weight of cells. Optical e.p.r. and low-temperature m.c.d. (magnetic circular dichroism) spectroscopies were used to investigate the nature of the protein ligands to the two haems in cytochrome bo from E. coli. Low-spin ferric haem b, the origin of a rhombic e.p.r. spectrum with g = 2.98, 2.26 and 1.50, gives rise to a charge-transfer band in the near-i.r. m.c.d. spectrum at 1622 nm. It is therefore concluded that haem b is co-ordinated by two histidine residues. The low-temperature m.c.d. spectrum of dithionite-reduced cytochrome bo comprises bands due both to low-spin ferrous haem b and to high-spin ferrous haem o. The bands arising from haem o show a direct correspondence with those in the m.c.d. spectrum of five-co-ordinate histidine-ligated ferrous haems such as myoglobin, implying that the protein residue liganding haem o is also histidine. This assignment was confirmed by measuring the e.p.r. spectrum of the nitric oxide derivative of fully reduced cytochrome bo. This showed a rhombic spectrum with g = 2.098, 2.008 and 1.987, and nuclear hyperfine splitting consistent with the co-ordination of ferrous haem by NO and histidine. The hyperfine splittings observed were 1.95 +/- 0.05 mT for the 14N of the NO ligand and 0.75 +/- 0.05 mT for the 14N of the proximal histidine. The e.p.r. spectrum of some samples of oxidized cytochrome bo show, at temperatures below 15 K, broad signals at g = 7.6, 3.6 and 2.8, and other preparations in the presence of glycerol yield signals at g = 10.8, 3.2 and 2.6. These signals, which are abolished by the addition of cyanide, are assigned to the binuclear centre, cytochrome o-CuB, suggesting that the binuclear site may display heterogeneity. Carbon monoxide reacts with the reduced enzyme with a stoichiometry of 1:1, and the dissociation constant for this reaction was determined to be 1.7 x 10(-6)M. The second-order rate constants for this reaction were measured and shown to be similar to those determined for bovine cytochrome aa3 [Gibson and Greenwood (1963) Biochem. J. 86, 541-554].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.