Abstract

The expression patterns of the medium- and high-molecular-weight subunits of the neurofilament protein triplet have been extensively studied in several neuroanatomical studies. In the present study, we report the use of the low-molecular-weight neurofilament protein subunit (NF-L) as a reliable marker within the neurofilament protein family to reveal the regional architecture of mammalian neocortex. We document clearly its usefulness in anatomical parcellation studies and report unique expression patterns of NF-L throughout the mouse neocortex. NF-L was most abundant in the somatosensory cortex, the lateral secondary visual area, the granular insular cortex, and the motor cortex. Low NF-L staining intensity was observed in the agranular insular cortex, the prelimbic and infralimbic cortex, the anterior cingulate cortex, the visual rostromedial areas, the temporal association cortex, the ectorhinal cortex, and the lateral entorhinal cortex. NF-L immunoreactivity was present in the perikarya, dendrites, and proximal segment of axons primarily of pyramidal neurons, and was mainly located in layers II and III, and to a lesser extent in layers V and VI. Interestingly, Black-Gold myelin staining confirmed a close correlation between NF-L immunoreactivity and myelination patterns. The characteristic and distinctive distribution and laminar expression profiles of NF-L make it an excellent tool to assess accurately topographical boundaries among neocortical areas as illustrated herein in the adult mouse brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call