Abstract

With the mouse pilocarpine model of temporal lobe epilepsy (TLE), we showed a progressive loss of both principal cells and calbindin (CB)-, calretinin (CR)-, and parvalbumin (PV)-immunopositive interneurons in layers II-III of lateral entorhinal cortex (LEnt) from 2 months to 1 year after pilocarpine-induced status epilepticus (PISE). In the efferent pathway of LEnt, more Phaseolus vulgaris leucoagglutinin (PHA-L)-labelled en passant and terminal boutons with larger diameters were shown in the hippocampus and subiculum; in the prefrontal, piriform, and perirhinal cortices; and in the amygdaloid complex in experimental mice at the two time points compared with the control after iontophoretical injection of an anterograde tracer PHA-L into the LEnt. Furthermore, the numbers of CB- or CR-immunopositive neurons contacted by PHA-L-labelled en passant and terminal boutons decreased in most of these areas at 2 months or 1 year after PISE. In the afferent pathway of LEnt, the numbers of retrogradely labelled neurons were reduced significantly in the ipsilateral piriform cortex and endopiriform nucleus at 2 months and 1 year and in the reuniens thalamic nucleus only at 1 year after injection of a retrograde tracer cholera toxin B subunit (CTB) into the LEnt. The percentages of the number of CTB and CB or CR double-labelled neurons of all the retrogradely labelled neurons were also decreased in the reunions thalamic nucleus at 1 year after PISE. It is concluded that both cytoarchitectonic change and reorganization of afferent and efferent pathways in LEnt may be involved in the occurrence of TLE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call