Abstract

We have examined the cyto- and chemoarchitecture of the temporal and extended amygdala in the brain of a monotreme (the short-beaked echidna Tachyglossus aculeatus) using Nissl and myelin staining, enzyme histochemistry for acetylcholine esterase and NADPH diaphorase, immunohistochemistry for calcium binding proteins (parvalbumin, calbindin and calretinin) and tyrosine hydroxylase. While the broad subdivisions of the eutherian temporal amygdala were present in the echidna brain, there were some noticeable differences. No immunoreactivity for parvalbumin or calretinin for somata was found in the temporal amygdala of the echidna. The nucleus of the lateral olfactory tract could not be definitively identified and the medial nucleus of amygdala appeared to be very small in the echidna. Calbindin immunoreactive neurons were most frequently found in the ventrolateral part of the lateral nucleus, intraamygdaloid parts of the bed nucleus of the stria terminalis and the lateral part of the central nucleus. Neurons strongly reactive for NADPH diaphorase with filling of the dendritic tree were found mainly scattered through the cortical, central and lateral subnuclei, while neurons showing only somata reactivity for NADPH diaphorase were concentrated in the basomedial and basolateral subnuclei. Most of the components of the extended amygdala of eutherians could also be identified in the echidna. Volumetric analysis indicated that the temporal amygdala in both the platypus and echidna is small compared to the same structure in both insectivores and primates, with the central and medial components of the temporal amygdala being particularly small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call