Abstract

Cytidine deaminase (cytidine aminohydrolase, EC 3.5.4.5) from Escherichia coli has been purified to homogeneity through a rapid and efficient two-step procedure consisting of anion-exchange chromatography followed by preparative electrophoresis. The final preparation is homogeneous, as judged by a single band obtained by disc gel electrophoresis performed in the absence and presence of denaturing agents. The native protein molecular weight determined by gel filtration is 56 000. Sodium dodecyl sulfate disc gel electrophoresis experiments conducted upon previous incubation of the enzyme with dimethyl suberimidate suggest an oligomeric structure of two identical subunits of 33 000 molecular weight. The absorption spectrum of the protein reveals a maximum at 277 nm and a minimum at 255 nm. The isoelectric point is at pH 4.35. Amino acid analysis indicates an excess of acidic amino acid residues as well as six half-cystine residues. No interchain disulfide groups have been evidenced. According to Cleland's nomenclature, kinetic analysis shows a rapid-equilibrium random Uni-Bi mechanism. Cytidine deaminase is competitively inhibited by various nucleosides. Km values for cytidine, deoxycytidine, and 5-methylcytidine are 1.8 X 10(-4), 0.9 X 10(-4), and 12.5 X 10(-4) M, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call