Abstract

Over the last three decades, artificial intelligence has attracted lots of attentions in medical diagnosis tasks. However, few studies have been presented to assist urologists to diagnose bladder cancer in spite of its high prevalence worldwide. In this paper, a new computer aided diagnosis system is proposed to classify four types of cystoscopic images including malignant masses, benign masses, blood in urine, and normal. The proposed classifier is an ensemble of a well-known type of convolutional neural networks (CNNs) called VGG-Net. To combine the VGG-Nets, bootstrap aggregating approach is used. The proposed ensemble classifier was evaluated on a dataset of 720 images. Based on the experiments, the presented method achieved an accuracy of 63% which outperforms base VGG-Nets and other competing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.