Abstract

Mucus represents a strong barrier to tackle for oral or pulmonary administered drugs, especially in mucus-related disorders. This study uses a pathological cystic fibrosis (CF) mucus model to investigate how mucus impacts the passive diffusion of 45 ad hoc commercial drugs selected to maximize physicochemical variability. An in vitro mucosal surface was recreated by coupling the mucus model to a 96-well permeable support precoated with structured layers of phospholipids (parallel artificial membrane permeability assay, PAMPA). Results show that the mucus model was not a mere physical barrier but it behaves like an interactive filter. In nearly one-half of the investigated compounds, the diffusion was reduced by mucus, while other drugs were not sensitive to the mucus barriers. We also found that permeability can be enhanced when drug-calcium salts are formed. This was confirmed with cystic fibrosis sputum as a rough ex vivo model of CF mucus. Since the drug discovery process is characterized by a high rate of failure, the mucus platform is expected to provide an efficient support to early reduce the number of poor-performing drug candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.