Abstract
The preparation of oriented metalloprotein nanostructures through introduction of specific and complementary reactive groups on the solid and protein surfaces is critically dependent on the reaction conditions used to prepare the solid surface. Key problems include the hydrolytic stability of the Si-O bond, the low reactivity of simple nucleophilic silane reagents, protein physisorption, and identification of conditions for producing monolayer protein coverages. These problems are largely circumvented by utilizing a two-step linker synthesis, in which the surface is first prepared with a monolayer of (3-aminopropyl)silane (3-APS), and the resulting structure is derivatized with the heterobifunctional reagent N-succinimidyl 6-maleimidocaproate (EMCS). The maleimide functionality is then presented to the protein, into which a single unique cysteine residue has been introduced by genetic engineering techniques. Hydrolytic stability is dramatically enhanced by including a postreaction curing step, in which the solid surface temperature is elevated to drive the alkoxylsilane condensation reaction to completion. Finally substituting a gas-phase chemical vapor deposition procedure for the liquid-phase reaction of the 3-APS produces dramatically better control over coverage and quality of the resulting films. 23 refs., 4 figs., 2 tabs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.