Abstract

Cysteine S-conjugate beta-lyases are pyridoxal 5'-phosphate-containing enzymes that catalyze beta-elimination reactions with cysteine S-conjugates that possess an electron-withdrawing group attached at the sulfur. The end products of the beta-lyase reaction are pyruvate, ammonium and a sulfur-containing fragment. If the sulfur-containing fragment is reactive, the parent cysteine S-conjugate may be toxic, particularly to kidney mitochondria. Halogenated alkenes are examples of electrophiles that are bioactivated (toxified) by conversion to cysteine S-conjugates. These conjugates are converted by cysteine S-conjugate beta-lyases to thioacylating fragments. Several cysteine S-conjugates found in allium foods (garlic and onion) are beta-lyase substrates. This finding may account in part for the chemopreventive activity of allium products. This review (1) identifies enzymes that catalyze cysteine S-conjugate beta-lyase reactions, (2) suggests that toxicant channeling may contribute to halogenated cysteine S-conjugate-induced toxicity to mitochondria, and (3) proposes mechanisms that may contribute to the antiproliferative effects of sulfur-containing fragments eliminated from allium-derived cysteine S-conjugates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call