Abstract
The cysteine-rich secretory proteins (CRISPs) are a group of four proteins in the mouse that are expressed abundantly in the male reproductive tract, and to a lesser extent in other tissues. Analysis of reptile CRISPs and mouse CRISP2 has shown that CRISPs can regulate cellular homeostasis via ion channels. With the exception of the ability of CRISP2 to regulate ryanodine receptors, the in vivo targets of mammalian CRISPs function are unknown. In this study, we have characterized the ion channel regulatory activity of epididymal CRISP4 using electrophysiology, cell assays, and mouse models. Through patch-clamping of testicular sperm, the CRISP4 CRISP domain was shown to inhibit the transient receptor potential (TRP) ion channel TRPM8. These data were confirmed using a stably transfected CHO cell line. TRPM8 is a major cold receptor in the body, but is found in other tissues, including the testis and on the tail and head of mouse and human sperm. Functional assays using sperm from wild-type mice showed that TRPM8 activation significantly reduced the number of sperm undergoing the progesterone-induced acrosome reaction following capacitation, and that this response was reversed by the coaddition of CRISP4. In accordance, sperm from Crisp4 null mice had a compromised ability to undergo to the progesterone-induced acrosome reaction. Collectively, these data identify CRISP4 as an endogenous regulator of TRPM8 with a role in normal sperm function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.