Abstract

In humans, there are two subclasses of IgA, IgA1 and IgA2, with IgA2 existing as three allotypes, IgA2m(1), IgA2m(2) and IgA2(n). In IgA1, Cys(133) in C(H)1 forms the disulfide bond to the L chain. Our previous studies indicated that in IgA2 lacking Cys(133), a disulfide bond forms between the alpha-chain and the L chain when Cys(220) is followed by Arg(221), but not when Cys(220) is followed by Pro(221), suggesting that the Cys in C(H)1 might be involved in disulfide bonding to the L chain. However, here we show that covalent assembly of the H and L chains in IgA2(n) requires hinge-proximal Cys(241) and Cys(242) in C(H)2 and not Cys(196) or Cys(220) in C(H)1. Using pulse-chase experiments, we have demonstrated that wild-type IgA2(n) with Arg(221) and Cys(241) and Cys(242) assembles through a disulfide-bonded HL intermediate. In contrast, the major intermediate for IgA2 m(1) with Pro(221) assembly was H(2) even though both Cys(241) and Cys(242) were present. Only a small fraction of IgA2 m(1) assembles through disulfide-bonded HL. Overall, our studies indicate that for IgA2 covalent assembly of the H and L chains requires the hinge-proximal cysteines in C(H)2 and that the structure of C(H)1 influences the efficiency with which this covalent bond forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.