Abstract
Rat hepatocytes cultured for 3 days in basal medium expressed low levels of cysteine dioxygenase (CDO) and high levels of gamma-glutamylcysteine synthetase (GCS). When the medium was supplemented with 2 mmol/l methionine or cysteine, CDO activity and CDO protein increased by >10-fold and CDO mRNA increased by 1.5- or 3.2-fold. In contrast, GCS activity decreased to 51 or 29% of basal, GCS heavy subunit (GCS-HS) protein decreased to 89 or 58% of basal, and GCS mRNA decreased to 79 or 37% of basal for methionine or cysteine supplementation, respectively. Supplementation with cysteine consistently yielded responses of greater magnitude than did supplementation with an equimolar amount of methionine. Addition of propargylglycine to inhibit cystathionine gamma-lyase activity and, hence, cysteine formation from methionine prevented the effects of methionine, but not those of cysteine, on CDO and GCS expression. Addition of buthionine sulfoximine to inhibit GCS, and thus block glutathione synthesis from cysteine, did not alter the ability of methionine or cysteine to increase CDO. GSH concentration was not correlated with changes in either CDO or GCS-HS expression. The effectiveness of cysteine was equivalent to or greater than that of its precursors (S-adenosylmethionine, cystathionine, homocysteine) or metabolites (taurine, sulfate). Taken together, these results suggest that cysteine itself is an important cellular signal for upregulation of CDO and downregulation of GCS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.