Abstract

Levilactobacillus brevis NPS-QW-145 isolated from kimchi is deficient in glutamate dehydrogenase-encoding gene (gdhA) to form glutamate, hence it required exogenous supplementation of glutamate/monosodium glutamate (MSG) for decarboxylation reaction to produce γ-aminobutyric acid (GABA). However, GABA conversion rate from MSG was relatively low. The individual effect of 20 amino acids on regulating GABA biosynthesis was investigated. Cysteine was selected to significantly improve GABA production from MSG. It was found that Lb. brevis was capable of producing H2O2, cysteine protected Lb. brevis against H2O2-induced oxidative damage to increase cell viability for the enhancement of GABA production. Moreover, cysteine promoted glucose consumption to produce acetyl-CoA for synthesizing long-chain fatty acids to significantly up-regulate GABA biosynthesis. These findings deciphered antioxidative capability of cysteine in Lb. brevis 145 and provided a theoretical basis for fatty acids synthesis-mediated GABA synthesis in Lb. brevis 145, and possibly in other lactic acid bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.