Abstract

Radiation-induced bystander effects (RIBE) refer to a unique process, in which factors released by irradiated cells or tissues exert effects on other parts of the animal not exposed to radiation, causing genomic instability, stress responses, and altered apoptosis or cell proliferation1–3. Despite important implications in radioprotection, radiation safety and radiotherapy, the molecular identities of RIBE factors and their mechanisms of action remain elusive. Here we use C. elegans as an animal model to study RIBE and have identified a cysteine protease CPR-4, a human cathepsin B homolog, as the first RIBE factor in nematodes. CPR-4 is secreted from animals irradiated with ultraviolet (UV) or ionizing gamma rays (IR) and is the major factor in the conditioned medium that leads to inhibition of cell death and increased embryonic lethality in unirradiated animals. Moreover, CPR-4 causes these effects and stress response at unexposed sites distal to the irradiated tissue. The activity of CPR-4 is regulated by the p53 homolog cep-1 in response to radiation and CPR-4 appears to act through the insulin-like growth factor receptor, DAF-2, to exert RIBE. Our study provides critical insights into the elusive RIBE and will facilitate identification of additional RIBE factors and their mechanisms of action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.