Abstract
Cysteine, as a small organic molecule and amino acid, is a basic building block for proteins and has special physiological functions in vivo. Cysteine has strong affinity for cells, which can be taken advantage for various applications. A new and facile surface modification method has been developed for rare-earth doped upconversion nanoparticles (UCNs) using cysteine. Compared with unmodified samples, the water-solubility and biocompatibility of the cysteine modified NaYF4:Yb,Er and NaYF4:Yb,Tm UCNs (termed as UCN-Er-Cys and UCN-Tm-Cys, respectively) have been significantly improved, while their particle size and emission properties did not change substantially. Due to the low cytotoxicity as revealed by methyl thiazolyl tetrazolium assay, the cysteine modified UCNs were successfully applied to imaging of Hela cells in vitro and nude mouse in vivo. Most significant is that the method offers the advantages of ease of synthesis and handling as well as potentially low cost for biomedical emerging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.